Skip to Content

Security Audit and 
Ethical Hacking​

Conectamos, depuramos y orquestamos datos a escala empresarial. Nuestro enfoque ELT + DataOps garantiza pipelines fiables, trazables y preparados para analítica avanzada y machine learning.

Retos habituales

  • • Procesos nocturnos que fallan sin aviso.
  • • Código ETL monolítico y difícil de mantener.
  • • Falta de trazabilidad y calidad del dato.
  • • Tiempos de carga que crecen al ritmo del volumen.

Enfoque Itrion

Automatizamos pipelines declarativos con orquestadores modernos (Airflow, Azure Data Factory, dbt). Implementamos pruebas de datos, alertas proactivas y despliegue continuo.

Resultado: tiempo de ciclo menor, errores detectados en minutos y flexibilidad para nuevas fuentes.

Pipeline estándar en 6 fases

1

Ingesta

CDC, API, streaming

2

Staging

Raw en formatos Parquet/Delta

3

Cleansing

Validaciones y estandarización

4

Transformación

dbt SQL + tests

5

Carga

Warehouse/Lakehouse

6

Publ. & linaje

Catalog & métricas de dato

Stack tecnológico

CapaAzureAWSOpen‑Source
OrquestaciónData FactoryGlue WorkflowsApache Airflow
TransformaciónSynapse SQLRedshift Spectrumdbt Core
StreamingEvent HubsKinesisKafka
Calidad de datoPurviewDeequGreat Expectations

Impacto medible

‑70 %

Errores de carga

Velocidad de procesamiento

99,9 %

Disponibilidad

8 sem

ROI medio

Buenas prácticas críticas

  • • Versiona pipelines y tests en Git; despliega con CI.
  • • Diseña para fallar: retry exponencial y idempotencia.
  • • Separa capa raw, clean y business.
  • • Agrega pruebas de calidad en cada paso (expectations).
  • • Registra linaje automático y métricas de frescura.

We connect, cleanse, and orchestrate data at enterprise scale. Our ELT + DataOps approach guarantees reliable, traceable pipelines prepared for advanced analytics and machine learning.

Common challenges

  • • Night processes failing silently.
  • • Monolithic ETL code, hard to maintain.
  • • Lack of traceability and data quality.
  • • Load times growing with volume.

Itrion approach

We automate declarative pipelines with modern orchestrators (Airflow, Azure Data Factory, dbt). We implement data tests, proactive alerts, and continuous deployment.

Result: shorter cycle times, errors caught in minutes, and flexibility for new sources.

Standard pipeline in 6 stages

1

Ingestion

CDC, API, streaming

2

Staging

Raw in Parquet/Delta formats

3

Cleansing

Validations and standardization

4

Transformation

dbt SQL + tests

5

Loading

Warehouse/Lakehouse

6

Publishing & lineage

Catalog & data metrics

Technology stack

LayerAzureAWSOpen‑Source
OrchestrationData FactoryGlue WorkflowsApache Airflow
TransformationSynapse SQLRedshift Spectrumdbt Core
StreamingEvent HubsKinesisKafka
Data qualityPurviewDeequGreat Expectations

Measurable impact

‑70 %

Load errors

Processing speed

99.9 %

Availability

8 weeks

Average ROI

Critical best practices

  • • Version pipelines and tests in Git; deploy with CI.
  • • Design to fail: exponential retry and idempotency.
  • • Separate raw, clean, and business layers.
  • • Add quality checks at every step (expectations).
  • • Register automatic lineage and freshness metrics.

At Itrion, we provide direct, professional communication aligned with the objectives of each organisation. We diligently address all requests for information, evaluation, or collaboration that we receive, analysing each case with the seriousness it deserves.

If you wish to present us with a project, evaluate a potential solution, or simply gain a qualified insight into a technological or business challenge, we will be delighted to assist you. Your enquiry will be handled with the utmost care by our team.